
Abstract Data Types Existential Types A Brief Introduction to Monads

Existential Types and Abstraction

Rob Sison
UNSW

Term 3 2024

1



Abstract Data Types Existential Types A Brief Introduction to Monads

Motivation

Throughout your studies, lecturers have (hopefully) expounded on
the software engineering advantages of abstract data types.

So what is an abstract data type?

Definition

An abstract data type is a type defined not by its internal
representation, but by the operations that can be performed on it.

Typically, these operations are specified using a more abstract
model than the actual implementation.

2



Abstract Data Types Existential Types A Brief Introduction to Monads

Language Examples: C

How do we do it in C?

stack.h

typedef stack_impl *Stack;

Stack empty();

Stack push(Stack, int);

Stack pop(Stack, int*);

bool isEmpty(Stack);

void destroy(Stack);

stack.c

#include "stack.h"

struct stack_impl {

int head;

Stack tail;

}

Stack empty() { ... }

...

By only importing stack.h,
we hide the implementation.

3



Abstract Data Types Existential Types A Brief Introduction to Monads

Language Examples: Haskell

Define a module but restrict what is exported:

module Stack

( Stack -- Cons and Nil are *not* exported

, empty

, push

, pop

, isEmpty

) where

data Stack = Cons Int Stack | Nil

empty :: Stack

empty = Nil

...

4



Abstract Data Types Existential Types A Brief Introduction to Monads

Language Examples: Java

Typically Java accomplishes this with subtype polymorphism,
something we discuss in the next lecture.

public interface Stack {

public void push(int x);

public int pop() throws EmptyStackException;

public boolean isEmpty();

}

public class ListStack implements Stack {

public ListStack() { ... };

...

}

5



Abstract Data Types Existential Types A Brief Introduction to Monads

Language Examples: Python

No luck here.

Quote

“Python is very simple and nice when you start to use it, but you
don’t get too far down the road, if you’re me, before you discover
it has no data abstraction at all. That’s not good because big
programs require modularity and encapsulation and you’d like a
language that could support that.”
Barbara Liskov, The Power of Abstraction, 2013.

You don’t need static types to enforce abstraction, but it helps.

6



Abstract Data Types Existential Types A Brief Introduction to Monads

MinHS

How can we support abstract data types in MinHS? Can we use
existing features to do so? We can use parametric polymorphism:

(type S.
recfun foo push pop isEmpty empty =

let s = push empty 42
in isEmpty (fst (pop s)))

::
∀S. (S → Int → S) (push)
→ (S → S × Int) (pop)
→ (S → Bool) (isEmpty)
→ S (empty)
→ Bool

The program foo is defined for any stack type S. Implementations
of the operations must be provided as parameters.

7



Abstract Data Types Existential Types A Brief Introduction to Monads

Modules

We would like a single value to pass around, that contains the
whole stack interface. It’s too cumbersome to pass around each
component individually like before. This value is called a module.

Our toy foo program from earlier needs to be rewritten as:

StackModule → Bool

For some type StackModule. Taking in a value of type
StackModule is analogous to importing the module.

8



Abstract Data Types Existential Types A Brief Introduction to Monads

Via Curry-Howard

Let’s translate the type of foo into a proposition, then do logical
transformations to it:

∀S. ((S → Int → S) → (S → S × Int) → (S → Bool) → S → Bool)

(translating to logic)

∀S. ((S ⇒ Int ⇒ S) ⇒ (S ⇒ S ∧ Int) ⇒ (S ⇒ Bool) ⇒ S ⇒ Bool)

(as P ⇒ Q ⇒ R = P ∧ Q ⇒ R)

∀S. ((S ⇒ Int ⇒ S) ∧ (S ⇒ S ∧ Int) ∧ (S ⇒ Bool) ∧ S ⇒ Bool)

(as ∀X .(P(X ) ⇒ Q) = (∃X .P(X )) ⇒ Q)

(∃S. (S ⇒ Int ⇒ S) ∧ (S ⇒ S ∧ Int) ∧ (S ⇒ Bool) ∧ S) ⇒ Bool

(back to types)

(∃S. (S → Int → S)× (S → S × Int)× (S → Bool)× S) → Bool

9



Abstract Data Types Existential Types A Brief Introduction to Monads

Existential Types

We have our StackModule type:

(∃S. (S → Int → S)× (S → S × Int)× (S → Bool)× S) → Bool

StackModule

But what is this ∃a. τ thing?

Existential vs Universal Types

∀a. τ When producing a value, a is an arbitrary, unknown type.
When consuming a value, a may be instantiated to any
desired type.

∃a. τ When consuming a value, a is an arbitrary, unknown type.
When producing a value, a may be instantiated to any
desired type.

10



Abstract Data Types Existential Types A Brief Introduction to Monads

Another, Smaller Example

An ADT Bag is specified by three operations:

1 emptyBag , which gives a new, empty bag.

2 addToBag , which adds an integer to the bag.

3 average, which gives the arithmetic mean of the bag.

What’s the type for this?

BagModule = ∃B. B × (B → Int → B)× (B → Int)

emptyBag

addToBag average

The type of a module is called its signature.

11



Abstract Data Types Existential Types A Brief Introduction to Monads

Making a Module
We can make a value of an existential type using the Pack
expression.

∆ ⊢ τ ok ∆; Γ ⊢ e : ρ[a := τ ]

∆; Γ ⊢ (Pack τ e) : ∃a. ρ

Just as the type ∀a. τ could be viewed as a function from a type
to a value, the type ∃a. τ could be viewed as a pair of a type and a
value.

Example (Bag as two integers)

Pack (Int× Int)
( (0, 0)
, recfun addToBag b i = (fst b + i , snd b + 1)
, recfun average b = (fst b ÷ snd b)
) :: BagModule

12



Abstract Data Types Existential Types A Brief Introduction to Monads

Importing a Module
If we have a module, we can access its contents using Open:

∆; Γ ⊢ e1 : ∃a. τ (∆, a bound); (Γ, x : τ) ⊢ e2 : ρ
(a bound) /∈ ∆ ∆ ⊢ ρ ok

∆; Γ ⊢ (Open e1 (a. x . e2)) : ρ

The last two premises ensure that the type ρ does not contain the
abstract type—it is only in scope inside e2.

Example (Averaging some numbers with a bag)

recfun f :: (BagModule → Int) bagM =
Open bagM
(B. (empty , addToBag , average).

average (addToBag (addToBag empty 60) 30)
)

13



Abstract Data Types Existential Types A Brief Introduction to Monads

Type inference?

Full type inference for existential types is an open research problem.

recfun f b =
if b then
Pack Int (1, λy . y + 1)

else
Pack Bool (true, λy . 1)

Q: What’s the type of f ?

A: Either of these:

Bool → ∃a. a× (a → Int)
Bool → ∃a. a× (Int → Int)

...but neither is more general.

Algorithms do exist with additional restrictions or annotations. See
e.g. Eisenberg et. al, ICFP 2021.

14

https://dl.acm.org/doi/10.1145/3473569


Abstract Data Types Existential Types A Brief Introduction to Monads

In Practice

Programming language support for modules is a mixed bag.

Dynamically typed languages typically don’t support them at
all1.

Haskell without extensions, C, and Go have very weak support
for them.

Rust has a feature called impl Traits which are a limited form
of existential types.

Java and similar accomplish modularity via OOP, which don’t
support existential typing in its full generality.

Languages in the ML family, like SML and OCaml have very
good support for modules, but typically not
modules-as-expressions.

1What they call “modules” aren’t. Just like types.
15



Abstract Data Types Existential Types A Brief Introduction to Monads

A Brief Introduction to Monads

Demo: See Code and Notes on course website after the lecture.

16


	Abstract Data Types
	

	Existential Types
	

	A Brief Introduction to Monads
	


